Tien-Min Gabriel Chu, DDS, PhD

Tien-Min Gabriel Chu, DDS, PhD
Tien-Min Gabriel Chu, DDS, PhD

Professor, Department of Biomedical and Applied Sciences
Adjunct Professor, Department of Orthopedic Surgery, Department of Biomedical Engineering
Associate Dean for Research

Contact Info

Phone  (317) 274-5148
Fax       (317) 278-7462

Office Address

Indiana University School of Dentistry
1121 W. Michigan St. Rm. DS112
Indianapolis, IN. 46202


Postdoc (Biomedical Engineering), University of Michigan, Ann Arbor, MI (2000)
PhD (Materials Science and Engineering), University of Michigan, Ann Arbor, MI (1999)
DDS, Kaohsiung Medical University, Taiwan (1989)


Research Interests

  • Bone tissue engineering
  • 3D scaffold through rapid prototyping
  • Light curing dental composites
  • Chu Research Group


  1. International patent pending “Use of Compounds with Thrombopoietic Activity to Promote Bone Growth and Healing” Kacena, Melissa. and Chu, Tien-Min G. Int'l Patent Application No. PCT/US2011/039187.
  2. US Patent 7,087,200 (2007) “Controlled local/global and micro/macro-porous 3D plastic, polymer and ceramic/cement composite scaffold fabrication and applications thereof” Taboas, Juan M; Maddox, Rachel D.; Krebsbach, Paul H.; Hollister, Scott J.; Chu, Tien-Min Gabriel
  3. US Patent 7,174,282 (2006) “Design methodology for tissue engineering scaffolds and biomaterial implants” Hollister, Scott J.; Chu, Gabriel Tien-Min; Taboas, Juan M
  4. US Patent 6,117,612 (2000) “StereoLithography Resin for Rapid Prototyping of Ceramics and Metals” Griffith, M.L., Halloran, J.W., and Chu, T.M.

Funding Support (2010 - Present)

  1. Orthopaedic Trauma Association, Decreasing systemic inflammation to improve fracture healing in polytraumatized rats, Co-PI
  2. Oral and Maxillofacial Surgery Foundation, Thromopoietin and Stem Cells for Cranial Regeneration, PI
  3. Osteo Science Foundation, Thrombopoietin in Cranial Regeneration, Co-PI
  4. Department of Defense, W81XWH-13-1-0501, Novel Therapy for Bone Regeneration in Large Segmental Defects, Co-PI
  5. Burroughs Wellcome Found Collaborative Research Travel Grant, Load-bearing tissue scaffolds with controlled degradation time, PI
  6. Shofu Inc. Japan, In vivo evaluation of novel zirconia dental implants in canines, PI
  7. Oral Maxillofacial Surgery Foundation, Stem-Cell Loaded 3D Scaffolds for Craniofacial Bone Repair, PI
  8. IUPUI International Development Fund, Comparison of global gene expression on regenerated new bone between androgen receptor knockout (ARKO) mice and normal mice, PI
  9. MO-SCI Corp. subcontract to DOD-SBIR, N102-179-0359, Artificial Tissue Matrices for Bone Repair, PI
  10. Indiana Nanotech LLC, The Effect of Niobium Oxide Coating on the in Vivo Performance of Commercial Sandblasted Dental Implants, PI
  11. Indiana CTSI, Tunable Hybrid Collagen-Dicalcium Phosphate Dihydrate Scaffolds for Improved Craniofacial Bone Repair (co-principal investigator with S. Harbin), Co-PI
  12. Indiana CTSI, Efficacy and Dose Evaluation of TPO in Healing a Long Bone Segmental Defect (co-principal investigator with M. Kacena), Co-PI


  1. Nassar, H.M., Platt, J.A., Chu, T.M., Optimizing light-cured composite through variations in camphorquinone and butylhydroxytoluene concentrations. Brazilian Oral Research. 2016 (in press)
  2. Griffin, K.S., Davis, K.M., Mckinley, T.O., Anglen, J.O., Chu, T.M., Boerckel, J.D., Kacena, M.A., Evolution of Bone Grafting: Bone Grafts and Tissue Engineering Strategies for Vascularized Bone Regeneration. Clinical Reviews in Bone and Mineral Metabolism, 2015. 13(4): p. 232-244
  3. Tanataweethum, N., Liu, W.C., Goebel, W.S., Li, D., Chu, T.M., Fabrication of Poly-l-lactic Acid/Dicalcium Phosphate Dihydrate Composite Scaffolds with High Mechanical Strength-Implications for Bone Tissue Engineering. J Funct Biomater, 2015. 6(4): p. 1036-53.
  4. Davis, L.M.; Griffin, K.S.; Chu, T-M.G.; Wenke, J.C.; Corona, B.T.; McKinley, T.O.; and Kacena, M.A., Muscle-bone interactions during fracture healing. J. Musculoskelet Neuronal Interact 2015, 15, 1-9
  5. Lien, W.; Roberts, H. W.; Platt, J. A.; Vandewalle, K. S., Hill, T. J., Chu, T. M., Microstructural evolution and physical behavior of a lithium disilicate glass-ceramic. Dent Mater 2015; 31: 928-940
  6. Kang, H.K., Chu, T.M., Dechow, P., Steward, K., Kyung, H.M., & Liu, S. S. (2015) Laser-treated stainless steel mini-screw implants: 3D surface roughness, bone-implant contact, and fracture resistance analysis. Eur J Orthod, 2015 Apr 23. pii: cjv017
  7. Taing-Watson, E., Katona, T.R., Stewart, K.T., Ghoneima, A., Chu, G.T., Kyung, H.M., &Liu, S. S. Microdamage generation by tapered and cylindrical mini-screw implants after pilot drilling. Angle Orthod, 2015. 85(5): p. 859-67.
  8. Al-Angari, S.S.; Hara, A.T.; Chu, T.-M.; Platt, J.; Eckert, G.; Cook, N.B., Physio-Mechanical Properties Of A Zinc-Reinforced Glass Ionomer Restorative Material. Journal of Oral Science. 2014;56:11-16.
  9. Brown, R.N.; Sexton, B.E.; Chu, T.-M.G., et al. Comparison of stainless steel and titanium alloy orthodontic mini-screw implants: A mechanical and histological analysis. American Journal of Orthodontics and Dentofacial Orthopedics. 2014; 145(4):496-504.
  10. Liu, W. C.; Robu, I. S.; Patel, R.; Leu, M. C.; Velez, M.; Chu, T. M., The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones. Biomed Mater 2014, 9, 045013.
  11. Yassen G.; Chu, Tien-Min; Gallant, G. A.; Allen, M. R.; Vail, M. M; Murray, P.E.; Platt, J.A., A novel approach to evaluate the effect of medicaments used in endodontic regeneration on root canal surface indentation. Clin Oral Investig. 2014;18 (6):1569-1575.
  12. Karunagaran, S.; Chu, T.-M. G.; The Effect of Inhibitor Concentrations on the Chemical And Mechanical Properties of Bis-GMA-Based Resin Dental Composites. Journal of Materials Science Research 2013, 2 (2), 118-125.
  13. Berman, A.; Zhang, W.; Zhang, H.; Hu, X.; Zhang, J.; Liu, J.; Feng, Z.; Chu, T.G., “Electrochemical Characteristics of AZ31 Magnesium Alloys with Microarc Oxidation Coating” IUSD Research Day, Indianapolis, IN, April 15, 2013
  14. Mansour, M. M.; Wagner, W. C.; Chu, T. M., Effect of mica reinforcement on the flexural strength and microhardness of polymethyl methacrylate denture resin. J Prosthodont 2013, 22 (3), 179-83.
  15. Posritong, S.; Borges, A. L.; Chu, T. M.; Eckert, G. J.; Bottino, M. A.; Bottino, M. C., The impact of hydrofluoric acid etching followed by unfilled resin on the biaxial strength of a glass-ceramic. Dent Mater 2013, 29 (11), e281-90.
  16. John, V.; Lane, B.; Chu, G.; Complications Associated with the placement and restoration of dental implants. Journal of the Indiana Dental Association 2013, 92, 46-53
  17. Alge, D. L.; Goebel, W. S.; Chu, T. M., Effects of DCPD cement chemistry on degradation properties and cytocompatibility: comparison of MCPM/beta-TCP and MCPM/HA formulations. Biomed Mater 2013, 8 (2), 025010.
  18. Allen, M. R.; Chu, T. M.; Ruggiero, S. L., Absence of exposed bone following dental extraction in beagle dogs treated with 9 months of high-dose zoledronic Acid combined with dexamethasone. J Oral Maxillofac Surg 2013, 71 (6), 1017-26.
  19. Bethel, M.; Levenda, J.; Hogg, P.; Alge, D.; Chu, T.-M. G.; Mullis, B., Compressive Loading Causes Unique Mechanism of Failure in Second Generation Sliding Hip Screw. International Journal of Medical Engineering and Informatics 2013, 5 (4), 311-320.
  20. Cheng, B.-H.; Chu, T.-M. G.; Chang, C.; Kang, H.-Y.; Huang, K.-E., Testosterone Delivered with a Scaffold Is as Effective as Bone Morphologic Protein-2 in Promoting the Repair of Critical-Size Segmental Defect of Femoral Bone in Mice. PLoS One 2013, 8 (8), e70234.
  21. Yassen, G.; Chu, T.; Allen, M.; Vail, M.; Murray, P.; Platt, J., A novel approach to evaluate the effect of medicaments used in endodontic regeneration on root canal surface indentation. Clin Oral Investig 2013.
  22. Yassen, G. H.; Chu, T. M.; Eckert, G.; Platt, J. A., Effect of medicaments used in endodontic regeneration technique on the chemical structure of human immature radicular dentin: an in vitro study. J Endod 2013, 39 (2), 269-73.
  23. Yassen, G. H.; Vail, M. M.; Chu, T. G.; Platt, J. A., The effect of medicaments used in endodontic regeneration on root fracture and microhardness of radicular dentine. Int Endod J 2013, 46 (7), 688-95.
  24. Alge, D. L.; Bennett, J.; Treasure, T.; Voytik-Harbin, S.; Goebel, W. S.; Chu, T. M., Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering. J Biomed Mater Res A 2012, 100 (7), 1792-802.
  25. Alge, D. L.; Goebel, W. S.; Chu, T. M., In vitro degradation and cytocompatibility of dicalcium phosphate dihydrate cements prepared using the monocalcium phosphate monohydrate/hydroxyapatite system reveals rapid conversion to HA as a key mechanism. J Biomed Mater Res B Appl Biomater 2012, 100 (3), 595-602.
  26. Bottino, M. C.; Thomas, V.; Schmidt, G.; Vohra, Y. K.; Chu, T. M.; Kowolik, M. J.; Janowski, G. M., Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective. Dent Mater 2012, 28 (7), 703-21.
  27. Mackey, A. C.; Karlinsey, R. L.; Chu, T.-M. G.; MacPherson, M.; Alge, D. L., Development of Niobium Oxide Coatings on Sand-Blasted Titanium Alloy Dental Implants. Materials Sciences and Applications 2012, 3 (5), 301-305.
  28. Velez, M.; Jung, S.; Kolan, K.; Leu, M.; Day, D.; Chu, T., In Vivo Evaluation of 13-93 Bioactive Glass Scaffolds Made by Selective Laser Sintering (SLS). In Biomaterials Science: Processing, Properties and Applications II (Ceramic Transactions, Vol. 237), Narayan, R.; Bose, S.; Bandyopadhyay, A., Eds. Wiley-American Ceramic Society: 2012; pp 91-100.
  29. Allen, M. R.; Kubek, D. J.; Burr, D. B.; Ruggiero, S. L.; Chu, T. M., Compromised osseous healing of dental extraction sites in zoledronic acid-treated dogs. Osteoporos Int 2011, 22 (2), 693-702.
  30. Allam, E.; Allen, M.; Chu, T. M.; Ghoneima, A.; Jack Windsor, L., In vivo effects of zoledronic acid on oral mucosal epithelial cells. Oral Dis 2011, 17 (3), 291-7.
  31. Santa Cruz Chavez, G.; Alge, D. L.; Chu, T. M., Additive concentration effects on dicalcium phosphate dihydrate cements prepared using monocalcium phosphate monohydrate and hydroxyapatite. Biomed Mater 2011, 6 (6), 065007.
  32. Shin, D.; Blanchard, S. B.; Ito, M.; Chu, T. M., Peripheral quantitative computer tomographic, histomorphometric, and removal torque analyses of two different non-coated implants in a rabbit model. Clin Oral Implants Res 2011, 22 (3), 242-50.
  33. Stewart, R.; Goldstein, J.; Eberhardt, A.; Chu, G. T.; Gilbert, S., Increasing vascularity to improve healing of a segmental defect of the rat femur. J Orthop Trauma 2011, 25 (8), 472-6.
  34. Alge, D.; Zhou, D.; Adams, L.; Wyss, B.; Shadday, M.; Woods, E.; Chu, T.; Goebel, W., Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med 2010, 4 (1), 73-81.
  35. Alge, D. L.; Chu, T. M., Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement. J Biomed Mater Res A 2010, 94 (2), 547-55.
  36. Stewart, R. L.; Cox, J. T.; Volgas, D.; Stannard, J.; Duffy, L.; Waites, K. B.; Chu, T. M., The use of a biodegradable, load-bearing scaffold as a carrier for antibiotics in an infected open fracture model. J Orthop Trauma 2010, 24 (9), 587-91.
  37. Mackey, A.; Karlinsey, R. L.; Chern, A.; Chu, T. G., The growth kinetics and in vitro biocompatibility of Nb2O5 microcones. International Journal of Medical Engineering and Informatics 2010, 2 (3), 247-260.
  38. Alge, D. L.; Santa Cruz, G.; Goebel, W. S.; Chu, T. M., Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation. Biomed Mater 2009, 4 (2), 025016.
  39. Moore, B. K.; Platt, J. A.; Borges, G.; Chu, T. M.; Katsilieri, I., Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper Dent 2008, 33 (4), 408-12.
  40. Perry, B. C.; Zhou, D.; Wu, X.; Yang, F. C.; Byers, M. A.; Chu, T. M.; Hockema, J. J.; Woods, E. J.; Goebel, W. S., Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods 2008, 14 (2), 149-56.
  41. Xie, D.; Zhao, J.; Yang, Y.; Park, J.; Chu, T. M.; Zhang, J. T., Preparation and evaluation of a high-strength biocompatible glass-ionomer cement for improved dental restoratives. Biomed Mater 2008, 3 (2), 25012.
  42. Yeom, H.; Blanchard, S.; Kim, S.; Zunt, S.; Chu, T. M., Correlation between micro-computed tomography and histomorphometry for assessment of new bone formation in a calvarial experimental model. J Craniofac Surg 2008, 19 (2), 446-52.
  43. Chu, T. M.; Warden, S. J.; Turner, C. H.; Stewart, R. L., Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2. Biomaterials 2007, 28 (3), 459-467.
  44. Chu, T. M.; Sargent, P.; Warden, S. J.; Turner, C. H.; Stewart, R. L., Preliminary evaluation of a load-bearing BMP-2 carrier for segmental defect regeneration. Biomed Sci Instrum 2006, 42, 42-7.
  45. Gonnerman, K. N.; Brown, L. S.; Chu, T. G., Effects of Growth Factors on Cell Migration and Alkaline Phosphatase Release. Biomedical Sciences Instrumentation 2006, 42, 60-65.
  46. Howk, D. E.; Chu, T. G., Design Variables for Mechanical Properties of Bone Tissue Scaffolds. Biomedical Sciences Instrumentation 2006, 42, 278-283.
  47. Metz, J. R.; Gonnerman, K. N.; Chu, A.; Chu, T. G., Effect of Crosslinking Density on Swelling and Mechanical Properties of PEGDA400/PCLTMA900 Hydrogels. Biomedical Sciences Instrumentation 2006, 42, 296-301.
  48. Metz, J. R.; Sargent, P. W.; Chu, T. G., Bovine Albumin Release and Degradation Analysis of Dicalcium Phosphate Dihydrate Cement. Biomedical Sciences Instrumentation 2006, 42, 389-394.
  49. Hollister, S. J.; Taboas, J. M.; Schek, R. M.; Lin, C. Y.; Chu, T. G., Design and Fabrication of Bone Tissue Engineering Scaffolds. In Bone Tissue Engineering, Hollinger, J. O.; Einhorn, T. A.; Doll, B. A.; Sfeir, C., Eds. CRC Press: Boca Raton, 2004; pp 167-192.
  50. Chu, T. M.; Hollister, S. J.; Halloran, J. W.; Feinberg, S. E.; Orton, D. G., Manufacturing and characterization of 3-D hydroxyapatite bone tissue engineering scaffolds. Ann N Y Acad Sci 2002, 961, 114-7.
  51. Hollister, S.; Chu, T.; Guldberg, R.; Zysset, P.; Levy, R.; Halloran, J.; Feinberg, S., Image Based Design and Manufacture of Scaffolds for Bone Reconstruction. In IUTAM Symposium on Synthesis in Bio Solid Mechanics Pedersen, P.; Bendsoe, M., Eds. Kluwer Academic 2002; Vol. 69, pp 163-174.
  52. Chu, T. M.; Orton, D. G.; Hollister, S. J.; Feinberg, S. E.; Halloran, J. W., Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 2002, 23 (5), 1283-93.
  53. Chu, T. M.; Halloran, J. W.; Hollister, S. J.; Feinberg, S. E., Hydroxyapatite implants with designed internal architecture. J Mater Sci Mater Med 2001, 12 (6), 471-8.
  54. Feinberg, S. E.; Hollister, S. J.; Halloran, J. W.; Chu, T. M.; Krebsbach, P. H., Image-based biomimetic approach to reconstruction of the temporomandibular joint. Cells Tissues Organs 2001, 169 (3), 309-21.
  55. Hollister, S.; Chu, T.; Halloran, J.; Feinberg, S., Design and Manufacture of Bone Replacement Scaffolds. In Bone Mechanics Handbook, 2nd ed.; Cowin, S. C., Ed. CRC Press: 2001; pp 36-1 - 36-14.
  56. Hollister, S. J.; Zysset, P. K.; Guldberg, R. E.; Chu, T. M.; Halloran, J. W., Engineering microstructures to evaluate and replace trabecular bone. Adv Exp Med Biol 2001, 496, 199-211.
  57. Chu, T. M.; Halloran, J. W., Curing of highly-loaded ceramic suspension in acrylates. J Am Ceram Soc 2000, 83, 2375-2380.
  58. Chu, T. M.; Halloran, J. W., High temperature flow behavior of ceramic suspensions. J Am Ceram Soc 2000, 83, 2183-2195.
  59. Feinberg, S.; Hollister, S.; Halloran, J.; Chu, T.; Krebsbach, P., Role of Biomimetics in Reconstruction of the Temporomandibular Joint. Oral Maxillofac Surg Clin North Am 2000, 12, 149-60.
  60. Feinberg, S.; Hollister, S.; Halloran, J.; Chu, T.; Krebsbach, P., A tissue engineering approach to site-specific reconstruction of skeletal structures of the maxillofacial region:part I. Shanghai Stomatology 2000, 9 (1), 34-8.
  61. Feinberg, S.; Hollister, S.; Halloran, J.; Chu, T.; Krebsbach, P., A tissue engineering approach to site specific reconstruction of skeletal structures of the maxillofacial region: part II. Shanghai Stomatology 2000, 9 (2), 88-93.
  62. Hollister, S. J.; Levy, R. A.; Chu, T. M.; Halloran, J. W.; Feinberg, S. E., An image-based approach for designing and manufacturing craniofacial scaffolds. Int J Oral Maxillofac Surg 2000, 29 (1), 67-71.
  63. Chu, G. T.-M.; Reilly, C.; Miao, W.; Halloran, J. W. In Fine-scale Architectures in Ceramics by Indirect SFF, Proceedings of 9th European Conference on Rapid Prototyping and Manufacturing, Athen, Greece, University of Nottingham: Athen, Greece, 2000; pp 233-246.
  64. Chu, G. T. M.; Brady, G. A.; Miao, W.; Halloran, J. W.; Hollister, S. J.; Brei, D. In Ceramic SFF by direct and indirect stereolithography, Materials Research Society Symposium Proceedings, Pittsburgh, PA, Materials Research Society: Pittsburgh, PA, 1998; pp 163-174.
  65. Levy, R. A.; Chu, T. M.; Halloran, J. W.; Feinberg, S. E.; Hollister, S., CT-generated porous hydroxyapatite orbital floor prosthesis as a prototype bioimplant. AJNR Am J Neuroradiol 1997, 18 (8), 1522-5.
  66. Chu, T.; Halloran, J., Hydroxyapatite suspension for implant fabrication by Stereolithography. In Case Studies in Ceramic Product Development, Manufacturing and Commercialization (Ceramic Transactions, Vol. 75), Ghosh, A.; Barks, R.; Hiremath, B., Eds. American Ceramic Society Westerville, OH, 1997; pp 119-125.
  67. Zysset, P. K.; Marsan, A. L.; Chu, T.-M.; Guldberg, R. E.; Halloran, J. W.; Hollister, S. J. In Rapid prototyping of trabecular bone for mechanical testing. In: Proceedings of the Bioengineering Conference, Proceedings of the 1997 Bioengineering Conference, Sunriver, OR, American Society of Mechanical Engineers: Sunriver, OR, 1997; pp 387-388.
  68. Hollister, S. J.; Levy, R. A.; Chu, T. M.; Halloran, J. W. In Design and manufacture of an orbital floor scaffold using image processing and rapid prototyping, Proceedings of the 1997 Bioengineering Conference, Sunriver, OR, American Society of Mechanical Engineers: Sunriver, OR, 1997; pp 391-392.
  69. Wagner, W. C.; Chu, T. M., Biaxial flexural strength and indentation fracture toughness of three new dental core ceramics. J Prosthet Dent 1996, 76 (2), 140-4.
  70. Chu, T.; Wagner, W.; Halloran, J., Ultraviolet curing of highly-loaded hydroxyapatite suspension. In Bioceramics: Materials and Applications II (Ceramic Transactions, Vol. 63), Rusin, R.; Fischman, G., Eds. American Ceramic Society: 1996; pp 57-66.
  71. Griffith, M. L.; Chu, T. M.; Wagner, W. C.; Halloran, J. W. In Ceramic Stereolithography for Investment Casting and Biomedical Applications, Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, Marcus, H. L.; Beaman, J. J.; Bourell, D. L.; Barlow, J. W.; Crawford, R. H., Eds. The University of Texas at Austin: Austin, TX, 1995; pp 31-38.